Use of a single glycine residue to determine the tilt and orientation of a transmembrane helix. A new structural label for infrared spectroscopy.

نویسندگان

  • J Torres
  • A Kukol
  • I T Arkin
چکیده

Site-directed dichroism is an emerging technique for the determination of membrane protein structure. However, due to a number of factors, among which is the high natural abundance of (13)C, the use of this technique has been restricted to the study of small peptides. We have overcome these problems through the use of a double C-deuterated glycine as a label. The modification of a single residue (Gly) in the transmembrane segment of M2, a protein from the Influenza A virus that forms H(+)-selective ion channels, has allowed us to determine its helix tilt and rotational orientation. Double C-deuteration shifts the antisymmetric and symmetric stretching vibrations of the CD(2) group in glycine to a transparent region of the infrared spectrum where the dichroic ratio of these bands can be measured. The two dichroisms, along with the helix amide I dichroic ratio, have been used to determine the helix tilt and rotational orientation of M2. The results are entirely consistent with previous site-directed dichroism and solid-state NMR experiments, validating C-deuterated glycine (GlyCD(2)) as a structural probe that can now be used in the study of polytopic membrane proteins.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

C-deuterated alanine: a new label to study membrane protein structure using site-specific infrared dichroism.

The helix tilt and rotational orientation of the transmembrane segment of M2, a 97-residue protein from the Influenza A virus that forms H(+)-selective ion channels, have been determined by attenuated total reflection site-specific infrared dichroism using a novel labeling approach. Triple C-deuteration of the methyl group of alanine in the transmembrane domain of M2 was used, as such modificat...

متن کامل

Structure of the influenza C virus CM2 protein transmembrane domain obtained by site-specific infrared dichroism and global molecular dynamics searching.

The 115-residue protein CM2 from Influenza C virus has been recently characterized as a tetrameric integral membrane glycoprotein. Infrared spectroscopy and site-directed infrared dichroism were utilized here to determine its transmembrane structure. The transmembrane domain of CM2 is alpha-helical, and the helices are tilted by beta = (14.6 +/- 3.0) degrees from the membrane normal. The rotati...

متن کامل

Secondary structure, orientation, and oligomerization of phospholemman, a cardiac transmembrane protein.

Human phospholemman (PLM) is a 72-residue protein, which is expressed at high density in the cardiac plasma membrane and in various other tissues. It forms ion channels selective for K+, Cl-, and taurine in lipid bilayers and colocalizes with the Na+/K+-ATPase and the Na+/Ca2+-exchanger, which may suggest a role in the regulation of cell volume. Here we present the first structural data based o...

متن کامل

Prediction of Freshness Quality and Phosphate Residue of White Shrimp Products Using Near-Infrared Spectroscopy

 Background: The manufacturing of frozen shrimp is an important industry for the economy of Thailand. The objective of this study was to use Near-Infrared (NIR) spectroscopy to determine the freshness quality, including Total Volatile Basic Nitrogen (TVB-N) and Water Holding Capacity (WHC) of white shrimp (whole and chopped shrimp) and phosphate residues of shrimp. Methods: Sixty white shrimp ...

متن کامل

Molecular Insight into the Mutual Interactions of Two Transmembrane Domains of Human Glycine Receptor (TM23-GlyR), with the Lipid Bilayers

Appearing as a computational microscope, MD simulation can ‘zoom in’ to atomic resolution to assess detailed interactions of a membrane protein with its surrounding lipids, which play important roles in the stability and function of such proteins. This study has employed the molecular dynamics (MD) simulations, to determine the effect of added DMPC or DMTAP molecules on the structure of D...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 79 6  شماره 

صفحات  -

تاریخ انتشار 2000